Photoluminescence Math, Machines, and Music

[1] From Liouville theorem to Schrödinger equation

25 August 2021 Exotic expositions Quantum mechanics revisited Quantum physics Classical physics Schrödinger equation

We illustrate the transition from Liouville theorem in classical mechanics to Ehrenfest theorem in quantum mechanics, and then demonstrate a heuristic argument for Schrödinger equation.

We start from the fact that the evolution of a classical system in the phase space is incompressible, as thus:

Liouville:

\(0\)\(\;=\;\)\(\dfrac{\mathrm{d} \rho}{\mathrm{d} t}\)

\(\;=\;\)\(\dfrac{\partial \rho}{\partial t}\)\(\,+\,\)\( \displaystyle\sum\limits^{N}_{n \;=\; 1}\)\(\left(\vphantom{\dfrac{\partial \rho}{\partial q \vphantom{ q}_{n}} \dfrac{\mathrm{d} q \vphantom{ q}_{n}}{\mathrm{d} t} \,+\, \dfrac{\partial \rho}{\partial p \vphantom{ p}_{n}} \dfrac{\mathrm{d} p \vphantom{ p}_{n}}{\mathrm{d} t}}\right.\)\(\dfrac{\partial \rho}{\partial q \vphantom{ q}_{n}}\)\(\dfrac{\mathrm{d} q \vphantom{ q}_{n}}{\mathrm{d} t}\)\(\,+\,\)\(\dfrac{\partial \rho}{\partial p \vphantom{ p}_{n}}\)\(\dfrac{\mathrm{d} p \vphantom{ p}_{n}}{\mathrm{d} t}\)\(\left.\vphantom{\dfrac{\partial \rho}{\partial q \vphantom{ q}_{n}} \dfrac{\mathrm{d} q \vphantom{ q}_{n}}{\mathrm{d} t} \,+\, \dfrac{\partial \rho}{\partial p \vphantom{ p}_{n}} \dfrac{\mathrm{d} p \vphantom{ p}_{n}}{\mathrm{d} t}}\right)\)

By Hamiltonian equations, we have Liouville theorem:

\(\;=\;\)\(\dfrac{\partial \rho}{\partial t}\)\(\,+\,\)\( \displaystyle\sum\limits^{N}_{n \;=\; 1}\)\(\left(\vphantom{\dfrac{\partial \rho}{\partial q \vphantom{ q}_{n}} \dfrac{\partial H}{\partial p \vphantom{ p}_{n}} \,-\, \dfrac{\partial \rho}{\partial p \vphantom{ p}_{n}} \dfrac{\partial H}{\partial q \vphantom{ q}_{n}}}\right.\)\(\dfrac{\partial \rho}{\partial q \vphantom{ q}_{n}}\)\(\dfrac{\partial H}{\partial p \vphantom{ p}_{n}}\)\(\,-\,\)\(\dfrac{\partial \rho}{\partial p \vphantom{ p}_{n}}\)\(\dfrac{\partial H}{\partial q \vphantom{ q}_{n}}\)\(\left.\vphantom{\dfrac{\partial \rho}{\partial q \vphantom{ q}_{n}} \dfrac{\partial H}{\partial p \vphantom{ p}_{n}} \,-\, \dfrac{\partial \rho}{\partial p \vphantom{ p}_{n}} \dfrac{\partial H}{\partial q \vphantom{ q}_{n}}}\right)\)\(;\,\)

At this point, we have to imagine what this relation looks like in the matrix mechanics. Let \(\mathbf{R}\) be the density matrix, and \(\mathbf{H}\) the Hamiltonian matrix, and \(\mathbf{Q}\) and \(\mathbf{P}\) the position and momentum matrices. We have two things to scale here, \(\eth\)\(\rho\) and \(\eth\)\(H\)\(\,/\,\)\(\eth\)\(q \vphantom{ q}_{n}\)\(\eth\)\(p \vphantom{ p}_{n}\)\(\eth\)\(t\). We may scale both of their maximal values to \(1\), so \(\rho\) and \(H\) are interpreted as unitary evolutions; and we take that \(\eth\)\(q \vphantom{ q}_{n}\)\(\eth\)\(p \vphantom{ p}_{n}\)\(\;=\;\)\(\mathring{\imath}\)\(\hslash\) , the smallest unit of angular momentum, where the phase \(\mathring{\imath}\) is just a gauge.

This way, \(\left(\vphantom{\partial \rho \,/\, \partial q \vphantom{ q}_{n}}\right.\)\(\partial\)\(\rho\)\(\,/\,\)\(\partial\)\(q \vphantom{ q}_{n}\)\(\left.\vphantom{\partial \rho \,/\, \partial q \vphantom{ q}_{n}}\right)\)\(\eth\)\(q \vphantom{ q}_{n}\) can be considered as the component \(n\) of the density matrix under the \(q \vphantom{ q}_{n}\) basis, and \(\left(\vphantom{\partial H \,/\, \partial p \vphantom{ p}_{n}}\right.\)\(\partial\)\(H\)\(\,/\,\)\(\partial\)\(p \vphantom{ p}_{n}\)\(\left.\vphantom{\partial H \,/\, \partial p \vphantom{ p}_{n}}\right)\)\(\eth\)\(p \vphantom{ p}_{n}\), the component \(n\) of the Hamiltonian matrix under the \(p \vphantom{ p}_{n}\) basis. Unfortunately, we no longer have \(q \vphantom{ q}_{n}\)\(,\,\)\(p \vphantom{ p}_{n}\) as a compatible set of coordinates; rather, they are off by a change of basis. However, we can imagine \(\mathbf{R}\) to be written as a matrix from the position to the momentum. Hence from Liouville, according to the heuristic above, we have the relation:

\(0\)\(\;=\;\)\(\dfrac{\partial}{\partial t}\)\(\mathbf{R}\)\(\,+\,\)\(\dfrac{1}{\mathring{\imath} \hslash}\)\(\left(\vphantom{\mathbf{R} \mathbf{H} \,-\, \mathbf{H} \mathbf{R}}\right.\)\(\mathbf{R}\)\(\mathbf{H}\)\(\,-\,\)\(\mathbf{H}\)\(\mathbf{R}\)\(\left.\vphantom{\mathbf{R} \mathbf{H} \,-\, \mathbf{H} \mathbf{R}}\right)\)\(;\,\)

Switching to wave mechanics in Schrödinger picture, we let \(\rho\) be the density operator, and \(H\) the Hamiltonian.

\(0\)\(\;=\;\)\(\dfrac{\partial}{\partial t}\)\(\rho\)\(\,+\,\)\(\dfrac{1}{\mathring{\imath} \hslash}\)\(\left(\vphantom{\rho H \,-\, H \rho}\right.\)\(\rho\)\(H\)\(\,-\,\)\(H\)\(\rho\)\(\left.\vphantom{\rho H \,-\, H \rho}\right)\)\(;\,\)

Multiplying wave function \(\psi\) on both sides, and recalling \(\rho\)\(\psi\)\(\;=\;\)\(\psi\), we get:

\(0\)\(\;=\;\)\(\dfrac{\partial}{\partial t}\)\(\psi\)\(\,-\,\)\(\rho\)\(\dfrac{\partial}{\partial t}\)\(\psi\)\(\,+\,\)\(\dfrac{1}{\mathring{\imath} \hslash}\)\(\left(\vphantom{\rho H \psi \,-\, H \psi}\right.\)\(\rho\)\(H\)\(\psi\)\(\,-\,\)\(H\)\(\psi\)\(\left.\vphantom{\rho H \psi \,-\, H \psi}\right)\)\(;\,\)

Schrödinger:

\(\mathring{\imath}\)\(\hslash\)\(\dfrac{\partial}{\partial t}\)\(\psi\)\(\;=\;\)\(H\)\(\psi\)\(;\,\)

And we have recovered the Schrödinger equation.

August 25, 2021